TECHNICAL NOTES AND SHORT PAPERS

Proof that Every Integer $\leq 452,479,659$ is a Sum of Five Numbers of the Form $Q_x = (x^3 + 5x)/6$, $x \geq 0$

By Herbert E. Salzer and Norman Levine

Watson [1] proved that every positive integer is a sum of eight tetrahedral numbers $T_x \equiv (x^3 - x)/6$, $x \ge 1$, as well as of eight numbers $Q_x \equiv T_x + x = (x^3 + 5x)/6$, $x \ge 0$, and states that "a similar result holds" for $R_x \equiv T_x - x = (x^3 - 7x)/6$, x = 0 or $x \ge 3$. He also points out that T_x , Q_x and R_x are the only expressions of the form $T_x + Dx$, D integral, which can take the value 1 and permit a universal result for summands ≥ 0 . In view of the results obtained by the authors in [2], which gave overwhelming evidence that every integer required only five values of T_x , it is interesting to see whether a similar conjecture is justified for Q_x and R_x . There is an immediate lack of comparative interest in R_x whose nonnegative values are 0, 1, 6, 15, 29, 49, 76, 111, . . . because six such addends are needed for the following values of $n \leq 100$: 11, 26, 40, 54, 69. The remaining form of possible interest, namely Q_x , whose values run 0, 1, 3, 7, 14, 25, 41, 63, 92, 129, 175, . . . does not appear offhand as promising or "nice looking" as T_x to allow every integer to be a sum of five, even though Watson [1] verified that for $n \leq 210$. However, it was quite a surprise to find that, defining an "exceptional number" as a number requiring more than four summands, when the test was made up to 1,000,000, for Q_x there were vastly fewer exceptional numbers than for T_x . Thus, whereas in [1] the authors found as many as 241 exceptional numbers for T_x , the largest being as high as 343,867, in the present investigation only 21 exceptional numbers were found for Q_x , the largest being only 28415.

Following are the only numbers $\leq 1,000,000$ that are not the sum of four numbers Q_x :

37	372	2861	5898	28415
115	541	3340	6522	
122	1805	4148	6529	
166	2532	4980	7557	
334	2773	5157	10915	

From Table I it is immediately apparent that every integer $\leq 1,000,000$ is a sum of five numbers Q_x . The size of the gap between 28415 and 1,000,000 enables us to find a number N much larger than 1,000,000 for which every $n \leq N$ is a \sum_5 , or sum of five numbers Q_x . The basic principle in finding such an N is not new, having been employed by both Watson [1] and the authors [2] in a sort of loose manner. Apparently the sharpest form of that principle is formulated in the lemma below, which is also applicable to T_x and a wide class of similar functions.

Received June 12, 1967.

LEMMA. Let E be the largest exceptional number found in a test extending through L > E. Let x be the largest x for which $\Delta Q_x \equiv Q_{x+1} - Q_x < I = L - E$. Suppose that from the tabulation of exceptional numbers it is apparent that every $n \leq E$ is a \sum_{5} . Then any $n \leq N \equiv Q_{x+1} + L$ is a \sum_{5} .

Proof. For $n \leq L$, the result is in the hypothesis. If $L < n < Q_{x+1}, n - \text{some}$ $Q_i, i \leq x-1$, will come closest above L, so that $n-Q_{i+1} \leq L$. Since $Q_{i+1}-Q_i$ $\leq Q_x - Q_{x-1} < Q_{x+1} - Q_x < I, n - Q_{i+1}$ falls within the interval (E, L), so that n is a \sum_{5} . For $n=Q_{x+1}$, or $n=N\equiv Q_{x+1}+L$, the result is immediate, since L is the largest tested \sum_{4} . For $Q_{x+1} < n < N \equiv Q_{x+1} + L$, since $n - Q_{x+1} < L$, if n > L, $n - \text{some } Q_i$, $i \leq x$, comes closest above L, so that $n - Q_{i+1} \leq L$, and from $Q_{i+1} - Q_i \leq Q_{x+1} - Q_x < I$, $n - Q_{i+1}$ falls within the interval (E, L), so that n is a \sum_{5} . Q.E.D.

If we try to push the lemma to apply beyond $N \equiv Q_{x+1} + L$, say up to $Q_{z+1} + L + e$, it fails because for some n beyond $Q_{z+1} + L$ the i making $n - Q_i$ come closest above L must be $\geq x + 1$, and we have no assurance that $n - Q_{i+1}$ falls within the interval (E, L). The reason is that $Q_{i+1} - Q_i \geq Q_{x+2} - Q_{x+1} \geq I$, and if the number by which $Q_{x+2} - Q_{x+1}$ exceeds I is greater than the number by which $n - Q_i$ exceeds L, then $n - Q_{i+1} < L - I = E$.

Applying this lemma to Q_x , where the condition $\Delta Q_x < I$ is equivalent to $x^2 + x + 2 < 2I$, from Table I, E = 28415, L = 1,000,000, 2I = 2(L - E) = 284151,943,170, and x = 1393 is the largest x for which $x^2 + x + 2 = 1,941,844 < 2I$. Thus, every $n \le N = Q_{1394} + L = 451,479,659 + 1,000,000 = 452,479,659$ is a \sum_{5} .

We may apply this lemma also to T_x for which it was found in [1] that E =343,867 when the test for exceptional numbers extended as far as L = 1,043,999. From the tabulation of exceptional numbers in [1] it was apparent that every $n \leq E$ is a \sum_{5} for T_x . The condition $\Delta T_x < I$ is equivalent to $x^2 + x < 2I$. The largest x satisfying $x^2 + x < 2I = 2(L - E) = 1,400,264$ is x = 1182 (x = 1183for which $x^2 + x = 1,400,672$ is just slightly too big). Thus, every $n \le T_{1183} + L$ = 275,932,384 + 1,043,999 = 276,976,383 is a sum of five tetrahedral numbers. This is a substantial improvement over the 250,000,000 obtained previously in [1] from a looser use of the main idea in the above lemma instead of its optimally sharpened formulation given above.

Table I was calculated with a program similar to that employed in [1] to find exceptional numbers with respect to T_x . The first run, using 1,000,000 words of memory was done on an IBM 360-75. The print-out was checked by using a different machine, an IBM 360-65, and by varying the code to perform in five groups of 200000 words of memory.

941 Washington Avenue Brooklyn, New York 11225

14 Kingswood Circle

Old Bethpage, Long Island, New York 11804

1. G. L. Watson, "Sums of eight values of a cubic polynomial," J. London Math. Soc., v. 27,

1952, pp. 217-224. MR 14, 250.

2. H. E. SALZER & N. LEVINE, "Table of integers not exceeding 10 00000 that are not expressible as the sum of four tetrahedral numbers," MTAC, v. 12, 1958, pp. 141-144. MR 20 #6194.

^{*} Q_{x+1} may be less than L when I is small. But the result for the case $Q_{x+1} < n < L$ is contained in the hypothesis.